

RENDER
FP7-ICT-2009-5
Contract no.: 257790
www.render-project.eu

RENDER

RENDER Technical Architecture

Detailed Component Description

Editor: Delia Rusu, IJS

Author(s): RENDER Consortium

Deliverable Nature: Report (R)

Dissemination Level:
(Confidentiality)

Public (PU)

Actual Delivery Date: March 2013

Suggested Readers: RENDER Consortium

Version: 3.0

Keywords: Technical architecture, software components, interfaces, UML use case
diagrams, UML component diagrams

RENDER Technical Architecture

Page 2 of (51) © RENDER consortium 2010 – 2013

Disclaimer

This document contains material, which is the copyright of certain RENDER consortium parties, and may
not be reproduced or copied without permission.

In case of Public (PU):

All RENDER consortium parties have agreed to full publication of this document.

In case of Restricted to Programme (PP):

All RENDER consortium parties have agreed to make this document available on request to other
framework programme participants.

In case of Restricted to Group (RE):

The information contained in this document is the proprietary confidential information of the RENDER
consortium and may not be disclosed except in accordance with the consortium agreement. However, all
RENDER consortium parties have agreed to make this document available to <group> / <purpose>.

In case of Consortium confidential (CO):

The information contained in this document is the proprietary confidential information of the RENDER
consortium and may not be disclosed except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the
proprietor of that information.

Neither the RENDER consortium as a whole, nor a certain party of the RENDER consortium warrant that the
information contained in this document is capable of use, or that use of the information is free from risk,
and accept no liability for loss or damage suffered by any person using this information.

Full Project Title: RENDER – Reflecting Knowledge Diversity

Short Project Title: RENDER

Document Title: RENDER Technical Architecture

Editor (Name, Affiliation) Delia Rusu, IJS

Copyright notice

 2010-2013 Participants in project RENDER

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 3 of (51)

Executive Summary

This document complements the RENDER technical architecture documentation by focusing on a detailed
component description. We start with an overview of the general three-tier architecture, followed by an in-
depth description of each of the components.

Each component is described from the user point of view, via UML use case diagrams, as well as from the
software implementation point of view, via UML component diagrams.

We distinguish between a) the data layer components, which include the RDF repositories OWLIM and
FactForge; b) the application layer components: the Fact and Opinion Mining toolkits included in Enrycher
– the Diversity Mining Services, the Diversity-aware Ranking toolkit and Newsfeed, a Web Crawler; and c)
the presentation layer components: the use case applications and other supporting tools.

RENDER Technical Architecture

Page 4 of (51) © RENDER consortium 2010 – 2013

Table of Contents

Executive Summary ... 3
Table of Contents .. 4
List of Figures ... 5
List of Tables .. 6
Abbreviations... 7
Definitions ... 8
1 Introduction ... 9
2 RENDER General Component Architecture .. 10
3 Data Layer Software Components ... 11

3.1 Use Case Diagrams .. 11
3.2 Component Diagrams ... 13

4 Application Layer Software Components ... 15
4.1 Diversity Mining Services (Enrycher) .. 15

4.1.1 Use Case Diagram .. 15
4.1.2 Component Diagram .. 16
4.1.3 Enrycher Performance ... 18

4.2 Newsfeed (Web Crawler) .. 18
4.2.1 Use Case Diagram .. 18
4.2.2 Component Diagram .. 19

4.3 Ranking Service ... 20
4.3.1 Use Case Diagram .. 20
4.3.2 Component Diagram .. 21

5 Presentation Layer Software Components .. 23
5.1 Telefonica Case Study Software Components .. 23

5.1.1 Use Case Diagram .. 23
5.1.2 Component Diagram .. 26

5.2 Wikipedia Case Study Software Components ... 27
5.2.1 Task List Generator .. 27
5.2.2 Article Statistics and Quality Monitor .. 30
5.2.3 WIKIGINI... 33
5.2.4 NewsFinder .. 37

5.3 Google Case Study Software Components ... 38
5.3.1 Use Case Diagram .. 38
5.3.2 Component Diagram .. 40

5.4 Drupal Extension ... 42
5.4.1 Use Case Diagram .. 42
5.4.2 Component Diagram .. 45

5.5 TwiDiViz ... 45
5.5.1 Use Case Diagram .. 46
5.5.2 Component Diagram .. 47

5.6 Interactive Modelling Tool .. 48
5.6.1 Use Case Diagram .. 48
5.6.2 Component Diagram .. 49

References ... 51

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 5 of (51)

List of Figures

Figure 1. The RENDER three-tier general architecture, showing the software components. 10
Figure 2. User-based use case diagram. .. 11
Figure 3. Data infrastructure setup use case diagram. ... 12
Figure 4. RENDER Data Layer Components. .. 14
Figure 5. Enrycher (Web UI) use case diagram. ... 15
Figure 6. Diversity Mining Services component diagram. ... 17
Figure 7. News articles processed by Enrycher per hour, during a time window of a week. 18
Figure 8. The Newsfeed use case diagram. ... 19
Figure 9. The Newsfeed component diagram. .. 20
Figure 10. The Ranking service use case diagram. .. 21
Figure 11. The Ranking Service, Drupal extension and TwiDiViz component diagram. 22
Figure 12. The Telefonica OMT use case diagram. .. 23
Figure 13. The Telefonica OMT components and deployment diagram. .. 26
Figure 14. The Task List Generator use case diagram ... 28
Figure 15 The Task List Generator component diagram. .. 29
Figure 16. The ASQM use case diagram. ... 31
Figure 17. The ASQM component diagram. .. 32
Figure 18. The WIKIGINI use case diagram. ... 33
Figure 19. The WIKIGINI component diagram. .. 36
Figure 20. NewsFinder use case diagram .. 37
Figure 21. NewsFinder component diagram. .. 37
Figure 22. DiversiNews use case diagram. .. 38
Figure 23. DiversiNews component diagram. ... 40
Figure 24. The Google Summarizer component diagram. ... 41
Figure 25. The Drupal extension use case diagram. .. 42
Figure 26. The TwiDiViz use case diagram. .. 46
Figure 27. The Interactive Modelling Tool (HTML5 GUI) use case diagram. ... 48
Figure 28. The Interactive Modelling Tool component diagram. .. 50

RENDER Technical Architecture

Page 6 of (51) © RENDER consortium 2010 – 2013

List of Tables

Table 1. The “RENDER Data Layer in Applications” use case scenario. ... 12
Table 2. The “Use of RENDER Data Layer by Humans” use case scenario. ... 12
Table 3. The “Basic data layer setup” use case scenario. .. 13
Table 4. The “Secondary data layer setup” use case scenario. ... 13
Table 5. The “Input document” use case scenario. ... 15
Table 6. The “Select entity” use case scenario. ... 16
Table 7. The “Select category” use case scenario. .. 16
Table 8. The “Show semantic graph” use case scenario. .. 16
Table 9. Enrycher performance on social media and news data. ... 18
Table 10. The “Set filter” use case scenario. ... 19
Table 11. The “Select news” use case scenario. .. 19
Table 12. The “Clustering” use case scenario. ... 21
Table 13. The “Login” use case scenario. .. 23
Table 14. The “News report” use case scenario. ... 24
Table 15. The “Load report” use case scenario. .. 25
Table 16. The “Import report” use case scenario. ... 25
Table 17. The “Save report” use case scenario. .. 25
Table 18. The “Export report” use case scenario. ... 26
Table 19. The “Load report with Pivot Viewer (Twidiviz)” use case scenario. .. 26
Table 20. The “Request article list” use case scenario. ... 28
Table 21. The “Request article information” use case description. .. 31
Table 22. The “Search news” use case scenario. ... 37
Table 23. “Search News” use case scenario. ... 39
Table 24. “Select news cluster” use case scenario. ... 39
Table 25. “Select topic” use case scenario. ... 39
Table 26. “Select sentiment” use case scenario. ... 39
Table 27. “Select related entity” use case scenario. ... 40
Table 28. The “Create article” use case scenario. ... 43
Table 29. The “View related and diverse articles (detailed view)” use case scenario. 43
Table 30. The “Edit article” use case scenario. .. 43
Table 31. The “Show raw rdf annotation” use case scenario. ... 43
Table 32. The “Show graphical rdf annotation” use case scenario. .. 43
Table 33. The “Import articles from OWLIM” use case scenario. ... 44
Table 34. The “Store article to external OWLIM” use case scenario... 44
Table 35. The “View article” use case scenario. .. 44
Table 36. The “Access database via restful service” use case scenario. ... 44
Table 37. The “Extract KDO with Enrycher” use case scenario. .. 44
Table 38. The “Rank articles with ranking service” use case scenario. ... 44
Table 39. The “Show tag cloud” use case scenario. .. 45
Table 40. The “Show intext annotation” use case scenario. ... 45
Table 41. The “View related and diverse articles” use case scenario. .. 45
Table 42. The “Show article topics” use case scenario. .. 45
Table 43. The “Switch time period” use case scenario. .. 46
Table 44. The “Retrieve used filter” use case scenario. .. 46
Table 45. The “Filter dataset” use case scenario... 47
Table 46. The “Switch view” use case scenario. .. 47
Table 47. The “Zoom to twitter item” use case scenario. ... 47
Table 48. The “Clear filters” use case scenario. .. 47
Table 49. The “Query configuration” use case scenario. .. 48
Table 50. The “Model management” use case scenario. .. 49
Table 51. The “Task management” use case scenario. ... 49

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 7 of (51)

Abbreviations

ASQM Article Statistics and Quality Monitor

TLG Task List Generator

KDO Knowledge Diversity Ontology

RDF Resource Description Framework

RKS Reference Knowledge Stack

DMOZ Open Directory Project

UMBEL Upper Mapping and Binding Exchange Layer

SIOC Semantically-Interlinked Online Communities

SKOS Simple Knowledge Organization System

FOAF Friend of a Friend

RSS Really Simple Syndication

REST REpresentational State Transfer

SPARQL SPARQL Protocol and RDF Query Language

UML Unified Modelling Language

RENDER Technical Architecture

Page 8 of (51) © RENDER consortium 2010 – 2013

Definitions

Three-tier architecture a software architecture in which presentation, application processing and
 data management functions are logically separated.

RESTful web service (also called a RESTful web API) is a web service implemented using HTTP
and the principles of REST.

OWLIM is a family of semantic repositories, or RDF database management systems.

FactForge aims to allow users to find resources and facts based on the semantics of
the data.

Diversity Mining Services (Enrycher) comprise the fact and opinion mining toolkits developed in WP2.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 9 of (51)

1 Introduction

In this version of the RENDER technical architecture document we focus on an in-depth description of the
RENDER software components. We describe the software components from two different points of view:
that of the user interacting with the software components, and that of the software developer who would
want to re-implement or extend the existing RENDER software components.

If the previous version of the technical architecture document was presenting a general overview of the
RENDER software components, in this document we aim at providing a more detailed description of the
components, from the software implementation point of view.

The method of choice for describing the software components is via UML diagrams, which represent a
standardized general-purpose modelling language used in software engineering.

As in the previous version of the document, we start with the RENDER three-tier technical architecture. The
RENDER components are organized in a classical layered architecture, which includes a data layer,
application layer and finally, a presentation layer. In the previous version of this document we motivated
our choice for this type of architecture. Here we remind the reader the main components of the RENDER
architecture, which are going to be described in the remainder of this document:

The data layer components include:

 the Technology and Data Infrastructure: FactForge and the OWLIM nested RDF repositories

The data layer also contains use-case specific datasets and the KDO – the Knowledge Diversity Ontology.
These have been described in-depth in the previous version of this document.

The application layer components include:

 the Fact and Opinion Mining toolkits, with their functionality exposed through the Diversity Mining
Services (Enrycher)

 the Diversity-aware Ranking toolkit

 Newsfeed, a Web Crawler for the acquisition of multilingual news articles and blogs

The presentation layer components include:

 the use case tools: Google, Wikipedia and Telefonica

 other supporting tools: Drupal extension, TwiDiViz – a web-based application that enables the
analysis and visualization of diversity in Twitter data and the Interactive Modelling Tool supporting
the Telefonica case study.

In what follows, we start by presenting the three-tier architecture overview, and continue with describing
each component separately.

RENDER Technical Architecture

Page 10 of (51) © RENDER consortium 2010 – 2013

2 RENDER General Component Architecture

The RENDER three-tier general architecture showing the RENDER software components, is depicted in
Figure 1. We make a logical distinction between the data layer components, the application layer
components and the presentation layer components.

In the next sections of this document we are going to describe each of these components, using the UML
use case diagrams and component diagrams.

Figure 1. The RENDER three-tier general architecture, showing the software components.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 11 of (51)

3 Data Layer Software Components

Render data infrastructure, hosted in OWLIM semantic repository, is intended to support the different use
case scenarios of the project. It consists of a data layer (basic – a reason-able view with a segment from
LOD, secondary – nested repositories with processed additional data, e.g. news and tweets), and access
APIs.

Render Data Infrastructure in Telefonica Use Case

Telefonica use case makes use of RENDER data infrastructure to retrieve information based on specified in
the user interface parameters. These parameters fill specific spots in a predefined SPARQL query which is
run through the SPARQL API. This use case uses the secondary data layer with twitter data, in a nested
repository on top of the basic data layer, accessible at rendertweets.ontotext.com.

Render Data Infrastructure in Google Use Case

Google use case makes use of RENDER data infrastructure to retrieve related entities based on topics
identified by the Google news processing. The identified topics by the document processor are being
supplied to a component that launches a predefined SPARQL query that dynamically includes them. The
query is run through the SPARQL API. This use case uses the basic data layer, the reason-able view of a
segment of LOD, accessible at render.ontotext.com.

Render Data Infrastructure in Drupal Use Case/Drupal Extensions

Drupal extensions make use of RENDER data infrastructure to retrieve data for importing relevant
information via the SPARQL API from rendernews.ontotext.com. This is done by giving the end user the
opportunity of defining the credentials and restrictions on what articles should be imported to the Drupal
system.

TwiDiViz is used to visualize data retrieved from the RENDER data infrastructure. The Tweets are retrieved
by predefined SPARQL queries from rendertweets.ontotext.com and a subset of the data in the RENDER
data infrastructure is selected by defining a valid time period. The used dataset is available at
rendertweets.ontotext.com.

3.1 Use Case Diagrams

Figure 2. User-based use case diagram.

RENDER Technical Architecture

Page 12 of (51) © RENDER consortium 2010 – 2013

Table 1. The “RENDER Data Layer in Applications” use case scenario.

Use case name RENDER Data Layer in Applications

Actor RESTFul Service

Preconditions RENDER Data Layer set up

Main scenario 1. Gets user inserted search parameters
2. Executes search with adjusted SPARQL query
3. Returns results in a format to be input for the GUI

Alternative scenario 3. Returns results to be further processed before becoming input for the GUI

Table 2. The “Use of RENDER Data Layer by Humans” use case scenario.

Use case name Use of RENDER Data Layer by Humans

Actor User

Preconditions RENDER Data Layer set up

Main scenario 1. Formulates SPARQL query
2. Gets results

Alternative scenario 1. Formulate keyword term query
2. Gets results
3. Navigates through the results

Alternative scenario 1. Inserts two URIs in RelFinder
2. Gets results
3. Navigates through the results

Figure 3. Data infrastructure setup use case diagram.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 13 of (51)

Table 3. The “Basic data layer setup” use case scenario.

Use case name Basic Data Layer Setup

Actor System Administrator

Preconditions Hardware; OWLIM-SE license

Main scenario 1. System Administrator installs OWLIM
2. System Administrator creates a repository with OWL-Horst rule set, and
additional rules for the Reference Knowledge Stack
3. System Administrator sets up Forest interface
4. System Administrator loads the data models, the Reference Knowledge Stack
5. System Administrator loads the datasets of the basic data layer
6. System Administrator places exemplary SPARQL queries

Alternative scenario 4. RESTFul service loads the data models, the Reference Knowledge Stack
5. RESTFul service loads the datasets of the basic data layer

Alternative scenario 4. System Administrator loads some models through the Forest Interface
5. System Administrator loads some data through the Forest Interface

Table 4. The “Secondary data layer setup” use case scenario.

Use case name Secondary Data Layer Setup

Actor System Administrator

Preconditions Basic data layer set up

Main scenario 1. System Administrator sets up nested repositories, one per each specific
dataset
2. System Administrator sets up Forest interface
3. System Administrator loads the data models for the secondary data layer, per
dataset and per repository
4. System Administrator loads data in the secondary data layer, each dataset in
the corresponding nested repository
5. System Administrator places exemplary SPARQL queries

Alternative scenario 3. RESTFul service loads the data models for the secondary data layer, per
dataset and per repository
4. RESTFul service loads data in the secondary data layer, each dataset in the
corresponding nested repository

Alternative scenario 3. System Administrator loads some models through the Forest Interface
4. System Administrator loads some data through the Forest Interface

3.2 Component Diagrams

The RENDER Data Layer components are presented in Figure 4. In what follows we detail the main software
components of the Data Layer.

RENDER Data Infrastructure – Basic Data Layer

A segment of LOD is loaded as a reason-able view in OWLIM-SE using OWL-Horst inference rule set. The
LOD segment comprises: DBpedia, Freebase, Geonames, MusicBrainz, NYTimes, CIA Factbook, Wordnet,
Linvoj, Lexvo. The reason-able view is supplied by a Reference Knowledge Stack which contains mappings of
DBpedia, Freebase and Geonames ontologies to the Upper Level ontology PROTON, and makes all data
accessible through it.

RENDER Data Infrastructure – Nested Repositories

Nested repositories are an experimental OWLIM feature which allows for data sharing across repositories.
It is set on top of the repository containing RENDER basic data layer, one nested repository per secondary
dataset, e.g. one for the Tweeter data, one for the Google news data.

RENDER Technical Architecture

Page 14 of (51) © RENDER consortium 2010 – 2013

Render Data Infrastructure – Secondary Data Layer

Processed by Enrycher Tweeter data and Google news into RDF, based on the RENDER data models, which
include KDO, SIOC, DC, PROTON and some RENDER specific properties and entities, are loaded in the
corresponding nested repositories, which produces inferred statements as a result of the interaction
between the data in the basic data layer and the secondary data loaded.

Render Data Infrastructure – Access APIs

RENDER Data Infrastructure is accessible programmatically via standard SPARQL end point RESTFul service
for querying, loading and deleting, the later requiring security credentials. A human user friendly Forest
interface gives the possibility to query the data with keywords, with SPARQL 1.1 queries, and relation
discovery between two given entities. Three access points are provided, one for RENDER basic data layer,
render.ontotext.com, and two for the two nested repositories of the RENDER secondary data layer, e.g.
rendernews.ontotext.com and rendertweets.ontotext.com.

Figure 4. RENDER Data Layer Components.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 15 of (51)

4 Application Layer Software Components

The Application Layer software components comprise the Diversity Mining Services (Enrycher), The news
crawler (Newsfeed) and the Ranking service. The following sub-sections further detail these components.

4.1 Diversity Mining Services (Enrycher)

The Diversity Mining Services (Enrycher) expose the functionality of the Fact and Opinion Mining toolkits
via a RESTful API. Enrycher is a service-oriented system, providing shallow as well as deep text processing
functionality at the text document level. The shallow text processing functionality includes topic and
keyword detection and named entity extraction while the deep text processing functionality provides
named entity resolution with respect to existing Linked datasets, named entity merging, word sense
disambiguation into WordNet and assertion extraction, by identifying subject – predicate – object sentence
elements together with their modifiers (adjectives, adverbs) and negations.

Enrycher comprises a set of components which can be combined in different ways, forming a customizable
processing pipeline; each component is implemented as a service (in Java or C++) which can be called
independently.

The Web interface of Enrycher is designed as a demo, showing some of the service functionality. Given a
document as input, the user can obtain, via the demo interface, an RDF and XML representation of the
enriched document, as well as a visual representation of the document via the semantic graph.

4.1.1 Use Case Diagram

Figure 5. Enrycher (Web UI) use case diagram.

Table 5. The “Input document” use case scenario.

Use case name Input document

Actors User.

Preconditions -

RENDER Technical Architecture

Page 16 of (51) © RENDER consortium 2010 – 2013

Postconditions User visualizes extracted annotations.

Main scenario 1. User opens Enrycher web front-end in a web browser.
2. User inputs a document (plain-text)
3. User selects “Enrich”, “XML” or “RDF” output formats.
4. The system sends this information to the back-end server.
5. The back-end returns results.

Table 6. The “Select entity” use case scenario.

Use case name Select entity

Actors User.

Preconditions User gave a document as input to the system.

Postconditions User visualizes additional information about the selected entity.

Main scenario 1. User selects one of the entities from the list, for which more
information should be provided.
2. The system sends this information to the back-end server.
3. The back-end returns results.

Alternative scenario 1. No entities are retrieved by the system.

Table 7. The “Select category” use case scenario.

Use case name Select category

Actors User.

Preconditions User gave a document as input to the system.

Postconditions User visualizes additional information about the selected category.

Main scenario 1. User selects one of the categories from the list, for which more
information should be provided.
2. The system sends this information to the back-end server.
3. The back-end returns results.

Alternative scenario 1. No categories are retrieved by the system.

Table 8. The “Show semantic graph” use case scenario.

Use case name Show semantic graph

Actors User.

Preconditions User gave a document as input to the system.

Postconditions User visualizes the document semantic graph.

Main scenario 1. User clicks on “Show semantic graph”.
2. The system sends this information to the back-end server.
3. The back-end returns the semantic graph for the document.

Alternative scenario 3. The semantic graph cannot be retrieved, in which case the system
shows an error message.

4.1.2 Component Diagram

All Enrycher components are using the Enrycher object model, as defined in D2.2.1 [5]. The Enrycher object
model defines the main elements of an Enrycher document. Each component manipulates the Enrycher
document: it receives an input version of the Enrycher document which it extends (or enriches) and
provides an enriched document as output.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 17 of (51)

Text pre-processing consists of detecting sentence boundaries, splitting sentences into tokens, and
assigning a part of speech tag to each token. The output of this component is a pre-processed version of
the document, where each sentence has associated its tokens and their part of speech.

Entity extraction is performed via the OpenNLP1 natural processing toolkit. As named entities we consider
names of people, locations and organizations, dates, percentages and money amounts occurring in the
text. Entities are provided as annotations to the document.

The Entity Merging component has two sub-components: co-reference and anaphora resolution one. Co-
reference resolution s used to merge named entities with different representations. Anaphora resolution t
identifies corresponding entities for a set of predefined pronouns.

The purpose of the Entity Resolution component provides integration with existing knowledge bases with
the goal of using existing knowledge to enrich the set of features that we are able to extract from text.

The Disambiguation component identifies for each word/n-gram in text a corresponding WordNet (VUA)
resource, if available.

The Categorization component provides DMOZ categories for the input document.

The Article Template Discovery component operates on a collection of documents received as input, and
extracts common templates.

The Topic Detection and Sentiment Analysis components rely on the topic and sentiment models provided
by the Interactive Modelling Tool. These components provide topic and sentiment annotations for the
input document.

The Enrycher client(s) interact with the Diversity Mining Services via HTTP calls.

Figure 6. Diversity Mining Services component diagram.

1
 http://incubator.apache.org/opennlp/, last accessed on 30.03.2013.

http://incubator.apache.org/opennlp/

RENDER Technical Architecture

Page 18 of (51) © RENDER consortium 2010 – 2013

4.1.3 Enrycher Performance

We analysed the performance of the Diversity Mining Services (Enrycher) in two settings:

 For a subset of the Twitter data collection provided by Telefonica, which contains 22 GB of
uncompressed data, collected from April – August 2012

 For a subset of news articles from IJS Newsfeed, which includes 319 K news articles

The data processing step was parallelized over 2 machines with a total of 36 cores.

The performance results are summarized in Table 9, showing a comparative view of the two datasets.

Table 9. Enrycher performance on social media and news data.

 Social media data News data

Enrycher Pipeline
components

o Entity extraction
o Entity linking and classification to

Linked Data Datasets
o Sentiment analysis
o Reverse geo-coding to Linked Data
o RDF export

o Entity extraction
o Entity linking and classification to

Linked Data Datasets
o Sentiment analysis
o RDF Export

Throughput approx. 80 tweets per second (7M per
day)
Bottleneck on reverse geo-coding
Dataset has approx. 1M tweets per day

approx. 10 news articles per second
(approx. 1M per day)
Current bottleneck on linking and
classification
Dataset throughput is approx. 150k per
day

Figure 7 presents the performance (in articles per hour) of Enrycher over a time window of a week. The
performance results show that the Diversity Mining Services (Enrycher) can process data streams (news and
social media data). We also identify the bottlenecks which can further improve its performance.

Figure 7. News articles processed by Enrycher per hour, during a time window of a week.

4.2 Newsfeed (Web Crawler)

Newsfeed offers a clean, continuous, real-time aggregated stream of semantically enriched news articles
from RSS-enabled sites across the world.

The tool has associated a visual demo, whose use case diagram is presented in what follows.

4.2.1 Use Case Diagram

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 19 of (51)

Figure 8. The Newsfeed use case diagram.

Table 10. The “Set filter” use case scenario.

Use case name Set filter

Actors User.

Preconditions -

Postconditions User visualizes Newsfeed results, filtered according to the specified
keywords.

Main scenario 1. User opens Newsfeed web front-end in a web browser.
2. User sets a filter for news (by specifying keywords) in the main
page.
3. The system sends this information to the back-end server.
4. The back-end returns results.

Table 11. The “Select news” use case scenario.

Use case name Select news

Actors User.

Preconditions -

Postconditions User visualizes Newsfeed results, for the selected news items.

Main scenario 1. User opens Newsfeed web front-end in a web browser.
2. User selects news items from the real-time list of news.
3. The system sends this information to the back-end server.
4. The back-end returns results for the selected news items – an
image associated to the news item, and first paragraphs of the news.

4.2.2 Component Diagram

RENDER Technical Architecture

Page 20 of (51) © RENDER consortium 2010 – 2013

Figure 9. The Newsfeed component diagram.

The PostgreSQL database is running on a Linux server. The database contains a list of RSS feeds, which are
periodically downloaded by the RSS monitoring component (RSS Monitor). RSS feeds contain a list of news
article URLs and some associated metadata, such as tags, publication date, etc.

A separate component (Article Downloader) periodically retrieves the list of new articles and fetches them
from the web. The complete HTML is stored in the database, and simultaneously sent to a set of cleaning
processes (Cleaner) over a 0mq message queue.

The cleaning process converts the HTML into UTF8 encoding and updates the database with it. The cleaned
version of the text is stored back in the database, and sent over a message queue to consumers.

English language documents are sent to the Enrycher Web Service, where named entities are extracted and
resolved, and the entire document is categorized into a DMOZ topic hierarchy.

Both the clear text and the enriched versions of documents are fed to a file system cache (Content Caching
and Distribution Service), which stores a sequence of compressed xml files. The caching service exposes an
HTTP interface (containing SSE Publisher) to the world through an Apache transparent proxy, serving
those compressed xml files on user request. The Apache server also hosts a CGI process capable of
generating HTML5 server side events, which contains the article metadata and clear text as payload. These
events can be consumed using Javascript’s EventSource object in a web browser.

4.3 Ranking Service

The ranking component provides diversity-aware ranking with respect to the two dimensions "topic" and
"sentiment". The output is formed of document clusters each with a denoted representative.

4.3.1 Use Case Diagram

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 21 of (51)

Figure 10. The Ranking service use case diagram.

Table 12. The “Clustering” use case scenario.

Use case name Clustering

Actors Ranking User.

Preconditions Parameter estimation.

Postconditions Document cluster output

Main scenario The ranking user receives diversity-aware ranked data with respect
to the two dimensions "topic" and "sentiment".

4.3.2 Component Diagram

The folding and maximum algorithms are both cluster algorithms that were both introduced in [1]. The
service is not RESTful as per definition but the interaction is via HTTP and URL parameters. The only HTTP
function in use is GET. The service has four main parameters, which are: endpoint, restrictions, orderBy,
rank. The functionality is as follows:

 [endpoint] The Sesame/OWLIM SPARQL endpoint where KDO-conform data is contained.

 [restrictions] Restrictions can be put on the document/statement ?s.

 [orderBy] One can specify additional parameters in accordance to which should be ordered. If this
parameter is set, the FOLDING algorithm is applied by default.

 [rank] This parameter defines an emphasis on a certain property (either kdo:hasSentiment or
sioc:topic).

There exist futher parameters which are detailed in D3.3.1 [2] and D3.3.2. [3].

RENDER Technical Architecture

Page 22 of (51) © RENDER consortium 2010 – 2013

Figure 11. The Ranking Service, Drupal extension and TwiDiViz component diagram.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 23 of (51)

5 Presentation Layer Software Components

RENDER has a rich Presentation Layer, consisting of the three case study components, as well as supporting
tools. The remainder of the section presents each of these components in greater detail.

5.1 Telefonica Case Study Software Components

Telefónica Opinion Mining Tool (OMT) is intended for business and market products analysis, based on
users published opinions.

5.1.1 Use Case Diagram

Use case context: A new product has been launched in the market or a new release of any existing product
goes into the market. Responsible Business Units need customer’s feedback about the acceptance of the
new product or release.

Figure 12. The Telefonica OMT use case diagram.

Table 13. The “Login” use case scenario.

Use case name Login.

Actors User.

Preconditions User must have signed in the system.

Postconditions User has access to the reports generator and to its old saved reports
feature.

RENDER Technical Architecture

Page 24 of (51) © RENDER consortium 2010 – 2013

Main scenario 1. User opens the T-OMT web front-end on a web browser.
2. User tips its ‘user name’ and ‘password’ in the login page.
3. The system sends these values to the back-end server.
4. The back-end verifies that the input values match. The access is
granted.
5. The user web page is automatically redirected to the tool options
page.
6. The server provides to this page the list of saved reports for the
logged user.

Alternative scenario 4. The back-end detects that the input values do not match the
stored user profile values.
5. The front-end notifies a login error.

Alternative scenario 6. There is an error loading the user saved reports.
7. The front-end notifies there was an error loading its saved reports.

Table 14. The “News report” use case scenario.

Use case name New report.

Actors User.

Preconditions The user is logged.

Postconditions A properly formed report will be provided to the user.

Main scenario 1. The user opens the ‘new report’ form.
2. The user selects the ‘data source’ from the list of available sources.
3. The user selects the desired ‘topics’ from the list.
4. The user selects the ‘initial date’ to sort out the data to be considered
(optional)
5. The user selects the ‘final date’ to sort out the data to be considered
(optional)
6. The user clicks on the ‘new report’ button invoking the report generation.
7. A new report is generated according to the input filtering options.
8. The web page opens a new internal tab for the report and assigns it a
default name.
9. At this new internal tab, the user will find the report charts, the
information and options.

Alternative scenario

4. If the user lefts this field empty, the system will use all the data from the
beginning to the ‘final date’ selected.
5. The user selects the ‘final date’ to sort out the data to be considered
(optional)
6. The user clicks on the ‘new report’ button invoking the report generation.
7. A new report is generated according to the input filtering options.
8. The web page opens a new internal tab for the new report and assigns it a
default name.
9. Report charts, information and options will be added to this report tab.

Alternative scenario

5. If user left this field empty, the system will use all the data from ‘initial
date’ selected to the current date.
6. User clicks on ‘new report’ button invoking the report generation.
7. A new report is generated according to the input filtering options.
8. Web page opened a new internal tab for the new report an assign a
default name for it.
9. At this new internal tab, user will find, the report charts, information and
options.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 25 of (51)

Table 15. The “Load report” use case scenario.

Use case name Load report.

Actors User.

Preconditions The user must be logged in. The user must have any saved report to load.

Postconditions The saved report will be shown again to the user without needing further
data analysis.

Main scenario 1. The user opens the ‘new report’ form.
2. The user selects a saved report by its name.
3. The user clicks on the ‘load report’ button.
4. The report is loaded from the storage. A new internal tab is opened with
the name of the saved report.
5. Here the use case follows the same process of the ‘new report’ use case at
step ‘9’.

Alternative scenario 4. If there were any error downloading the report file, an error message will
be shown to the user.

Table 16. The “Import report” use case scenario.

Use case name Import report.

Actors User.

Preconditions The user must be logged in. The user must have any report file properly
formed.

Postconditions The report will be shown again to the user without further data analysis.

Main scenario 1. The user opens the ‘new report’ form.
2. The user clicks on the ‘import report’ button.
3. A pop-up explorer window asks the user to select the report to be
imported from its local file system.
4. Here the use case follows the same process of the ‘new report’ use case at
step ‘9’.

Alternative scenario 4. If there were any error uploading the report file, an error message
will be shown to the user.

Alternative scenario 4. If there were any error in the report file (malformed), an error
message will be shown to the user.

Table 17. The “Save report” use case scenario.

Use case name Save report.

Actors User.

Preconditions The user must be logged in. The report to be saved must be generated on an
internal web tab of the T-OMT.

Postconditions The report will be storage in a backend.

Main scenario 1. The user opens the ‘report options’ panel.
2. The user clicks on the ‘save report’ button.
3. A pop -up explorer window asks the user a name to identify the report.
4. The report will be uploaded to the storage and a confirmation message
will appear in the web interface.

Alternative scenario 4. If there were any error uploading the report file, an error message will be
shown to the user.

RENDER Technical Architecture

Page 26 of (51) © RENDER consortium 2010 – 2013

Table 18. The “Export report” use case scenario.

Use case name Export report.

Actors User.

Preconditions The user must be logged in. The report to be saved must be generated on an
internal web tab of the T-OMT.

Postconditions The user will download the report file to its local file system.

Main scenario 1. The user opens the ‘report options’ panel.
2. The user clicks on the ‘export report’ button.
3. A pop-up explorer window asks the user location and the name for the
report file.

Table 19. The “Load report with Pivot Viewer (Twidiviz)” use case scenario.

Use case name Load report with Pivot Viewer (Twidiviz).

Actors User.

Preconditions The user must be logged in. The report must be generated on an internal
web tab of the T-OMT.

Postconditions The Pivot Viewer will be shown to generate the interface with the same
inputs for the report.

Main scenario 1. The user opens the ‘report options’ panel.
2. The user clicks on the ‘Pivot Viewer’ button.
3. T-OMT interface will be replaced by the PivotViewer’s UI.
4. PivotViewer’s tool will show its own search using the same input values of
the original report.

5.1.2 Component Diagram

Figure 13. The Telefonica OMT components and deployment diagram.

Web Application (web browser side)

This is the front-end of the tool. It graphically shows the reports to the user. It is aimed at the user for
report handling. However, its main functionality is being the interface between the user and the report
generation engine to compose new reports.

• Web Control: To manage the coordination of front-end components and handing every event (from
users or backend callbacks).

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 27 of (51)

• Input-Output Manager: This component will handle the communications with the backend,
composing the AJAX messages and formatting the data received or to be sent.

o Resources file: This file describes the resources required for input-output operations like
external URLs, back-end API functions or input-output expected formats.

• Reports Manager: It will handle all the generated reports. It is an API to dispatch the needs from
the ‘graphical manager’ and the ‘input-output manager’ to set or to take data from the reports.

• Report Analyst: This component will receive analyzed data and it will adapt them to be used by the
‘graphical manager’ to generate the graphs, charts and all the graphical representations of the
report statistics.

o Data specifications File: This file describes the format and the nature of the received data
to compose reports from preprocessed data.

• Graphical Manager: This component will handle the user interface showing the reports, managing
the input forms and plotting report charts and results.

Web Application (web server side)

This is the back-end of the tool. It receives the user inputs, composes the queries and processes the data
coming from the repository. Once it has all the data, it takes out the analysis task and sends the results to
the front-end for their graphical visualization.

• WebUI: This component will collaborate with the front-end application. It will receive the request
from the user side (queries, save and load reports, login…)

o Query parameters file: This file describes some data needed to compose and send queries
to FactForge or to the data layer like URLs, templates, language descriptions…

• Mining Engine: This component will receive all the raw data from the repository when a new report
is ordered. It will take out the statistical analysis and the data processing to answer a front-end
request.

Data Layer (Databases)

This component will support some minor functionalities of the tool like the users’ login profiles or manage
the reports to be saved.

• Users Manager: It will handle and store the user profiles.

• Reports Manager: It will manage and store the saved reports.

OWLIM repositories (Massive data storage)

This component will store all the data available to compose the reports. It will resolve the upcoming
queries providing the data filtered by the user inputs. Its responsible is Ontotext.

5.2 Wikipedia Case Study Software Components

The Wikipedia case study contains four main software components, which we describe in what follows. We
start with the Task List Generator and the Article Statistics and Quality Monitor, which are two supporting
tools for the Wikipedia community. The next components that we describe are WIKIGINI and NewsFinder.

5.2.1 Task List Generator

The Task List Generator is a tool which is aimed at supporting in particular established Wikipedia authors.
With this tool users can generate lists of articles that need to be improved. The users can specify a category
or fields of interest and select different filters concerning problems in the content. The results are provided
in html or in wiki text.

RENDER Technical Architecture

Page 28 of (51) © RENDER consortium 2010 – 2013

5.2.1.1 Use Case Diagram

On the one hand an established Wikipedia author generates/requests list of articles which needs to be
improved with help of the task list generator. The user can choose his/her preferred category (intersection
of categories and/or exclusion of categories) and select specific filters to generate the result list. This list of
filters can be extended according to the requests of the users and the availability of further analysis
approaches. Currently, the user can find:

 outdated articles
 non-neutral articles
 articles containing certain flaws (templates)
 articles deviating in size
 articles with a majority of negative reader feedback
 articles without images

Figure 14. The Task List Generator use case diagram

Table 20. The “Request article list” use case scenario.

Use case name Request article list

Actors Wikipedia editors

Preconditions Open TLG form

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 29 of (51)

Main scenario 1. User selects a language.
2. User selects a search set (category, intersection of categories or
exclusion).
3. User selects the search depth within the category tree.
4. User selects the output format HTML.
5. User chooses results on demand.
6. User specifies the filters for searching

 outdated articles

 non-neutral articles

 articles containing certain flaws (templates)

 articles deviating in size

 articles with a majority of negative reader feedback

 articles without images
7. The backend calculates the article list for these conditions.
8. The results are presented as table below the search form.
9. User analyse the results and can check for necessary actions to improve
the articles.

Alternative scenarios 4. User selects the output format WikiText.
5. User chooses results via Email.
8. User gets an email with the results.

5.2.1.2 Components Diagram

Figure 15 The Task List Generator component diagram.

RENDER Technical Architecture

Page 30 of (51) © RENDER consortium 2010 – 2013

Task List Generator WebUI: The users can access the TLG via an online form. There they can specify
categories, the search depth in the category tree and the language version. Additionally, they can choose
the output format (HTML or WikiText) and select certain filters to generate a article list.

Task List Generator Backend: requests the GraphCore Category Tree Instance for articles according to the
language version, the category selection and the search depth. The resulting article list will be analysed by
the selected filter modules. The final filtered article list will be sorted and presented in a table in the chosen
output format.

Filter Modules create a unsorted list of articles according to the requested filters (filter list can be
extended):

 The Maintenance Template Filter checks which articles contain maintenance templates.
 The Article Feedback Filter checks for which articles an article feedback is available and collects the

percentage of negative ratings and the number of overall ratings.
 The Change Detector Filter searches for articles which were found by the Change Detector analysis.
 The Missing Images Filter checks which articles do not contain an image.
 The Size Deviation Filter checks which articles deviate in the article size compared to other articles

in the search article set.

5.2.2 Article Statistics and Quality Monitor

With help of ASQM a user can get a brief overview about the statistics and the status of a Wikipedia article.
A user can install a gadget within its user page in Wikipedia.

5.2.2.1 Use Case Diagram

On the other hand a Wikipedia reader can requests additional information about an article with help of the
Article Statistics and Quality Monitor. Thia information can be used to understand the status and the
quality, to improve or to extend an article, and also to find further information about a topic. For this the
user can use the following provided parameters and information:

 General statistics
 Results of fact coverage analysis
 Results of currentness analysis
 Results of neutrality analysis
 Results of authorship analysis
 Results of further assessment tools, like rating from the Article Feedback Tool

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 31 of (51)

Figure 16. The ASQM use case diagram.

Table 21. The “Request article information” use case description.

Use case name Request article information

Actors Wikipedia readers

Preconditions 1. User has to be logged in
2. ASQM gadget has to be installed in his account settings

Main scenario 1. User clicks on the ASQM tab.
2. ASQM script requests statistics, analysis scores and generates specific
links.
3. All available results are presented in a box.
4. User checks the statistics for the requested articles.
5. User follows the link to the LEA analysis and can check if links are missing
in the requested article.

Alternative scenarios
(if these information
are available for the
requested article)

6. User follows link to Change Detector result table.
7. User realises a number of published news articles and opens a link to the
list of news articles.
8. User realises a WikiGini Score and follows a link to the whole analysis of
this article.
9. User realises the percentage of the feedback rating and follows the link
to all feedbacks about this article.

RENDER Technical Architecture

Page 32 of (51) © RENDER consortium 2010 – 2013

5.2.2.2 Components Diagram

Figure 17. The ASQM component diagram.

ASQM Gadget: To use ASQM a user has to install a gadget. Further information on
http://toolserver.org/~render/stools/asqm.

ASQM API: After a successful installation a new tab "ASQM" will be visible in the tab bar for Wikipedia
articles. By pressing this tab, the information about this current article will be collected (by using the article
information models). The calculated results will be presented in an output box to the users.

Article Information models:

 The MediaWiki API Model requests the article feedback information for a given article from the
MediaWiki API.

 The Link Creator builds up the query link to the Link ExtrActor Analysis.
 The Page View Statistics Model requests http://stats.grok.se/ for a certain article.
 The RENDER DB Model requests for analysis results which are stored in the RENDER DB on the

Wikimedia Toolserver. If the article was detected by the Change Detector as out of date the link to
the result visualisation page will be provided. If a WikiGini result is available, the score of the latest
revision will be extracted and the link to the overall visualisation of all revisions of this article will
be build up.

 The MediaWiki DB Model requests the status of the article, the revision information, the
information of the linked files and the number of references.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 33 of (51)

5.2.3 WIKIGINI

WIKIGINI visualizes the inequality of authorship in a Wikipedia article: it accurately determines the authors
of all the words in every revision of an article and calculates a so-called “Gini-Index” as a measure of
inequality. It can thus show if the “ownership” of words in an article shifted from being quite equal (e.g.
every editor wrote about the same amount of words) to being unequal (e.g. 2% of editors wrote 90% of the
words).

5.2.3.1 Use Case Diagram

Figure 18. The WIKIGINI use case diagram.

Actors

WIKIGINI does not require any additional actors but the requester, who may be

 a human person using the web user interface (or manually the web API)

 a program using the web API

Both ways to send request to the application are accessible via standard HTTP request.

WIKIGINI supports two main use cases, one supporting use case as well as a number of derived special use
cases.

Specify language and page (supporting use case)

RENDER Technical Architecture

Page 34 of (51) © RENDER consortium 2010 – 2013

In order to be able to retrieve results from WIKIGINI an actor must specify the parameters language as well
as page. The language corresponds to one of the supported Wikipedia language versions; the page must be
a page within the corresponding Wikipedia language version. Both parameters specify the results to be
delivered in the two main use cases and are extended by the following two special use cases.

Specify revision (supporting use case)

The "Specify revision" use case extends the "Specify language and page" use case. In addition to a language
and a page the actor may specify a specific revision. The revision must correspond to a revision of the
requested page. The results returned will only include the results for the revision.

Specify revision range (supporting use case)

The "Specify revision range" use case extends the "Specify language and page" use case. In addition to a
language and a page the actor may specify a specific revision range. The revision range must correspond to
a revision range of the requested page. The results returned will only include the results for the revisions
with the given range.

Retrieve Gini diagram of a page

The first main use case is the retrieval of a Gini diagram visualizing the development of the Gini index in the
history of a Wikipedia page. Preferable the diagram is requested by a human person using the web user
interface. The result presented to the user is a dynamic chart enabling the user to retrieve more detailed
information about specific revisions by directly in the diagram. An actor may also specify a range of
revisions directly in the diagram and thus trigger the following specialized use case.

Retrieve Gini diagram of a revision range

The "Retrieve Gini diagram of a revision range" extends the "Retrieve Gini diagram of a page" use case. A
user may select a range of revisions directly in the diagram. The diagram will be automatically adjusted to
show the specific range of revisions in detail.

Retrieve Gini indexes of a page

The second main use case is the retrieval of Gini data preferable from third party applications for further
processing of the results. The diagram may be requested by an application or manual by a human person
using the web based applications programing interface. The result delivered to the actor includes the Gini
indexes of all revisions of a page. An actor may also specify a range or a specific version an thus trigger one
of the following specialized use cases.

Retrieve Gini index of a revision

The "Retrieve Gini index of a revision" extends the "Retrieve Gini indexes of a page" use case. The result will
include the Gini index for a specific revision if the actor specifies a specific revision and this revision is part
of the revision history of the page.

Retrieve Gini indexes of a revision range

The "Retrieve Gini indexes of a revision range" extends the "Retrieve Gini indexes of a page" use case. The
result will include the Gini index for a range of revision if the actor specifies a valid revision range and this
revision range is part of the revision history of the page.

5.2.3.2 Component Diagram

WIKIGINI WebUI

The WIKIGINI WebUI is accessible via standard web browsers and intended for human users. It renders the
available results of the analysis of a particular Wikipedia page, the Gini indexes, in a user-friendly manner.

WIKIGINI WebAPI

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 35 of (51)

The WIKIGINI WebAPI is accessible via standard web browsers and intended for programmatic access. It
return the available results of the analysis of a particular Wikipedia page, the Gini indexes, in an
application-friendly manner.

WIKIGINI Database

The WIKIGINI Database is the central storage for results of the analysis as well as for analysis request. The
database is deployed in a standard database system, e.g. MySQL, and thus accessible via standard SQL
mechanisms. However, human as well as programmatic access should be handled via the WebUI and
WebAPI components.

WIKIGINI Analyser

The WIKIGINI Analyser encapsulates the logic to handle new requests, load article dumps and calculate
authorship of text as well as Gini indexes. This component runs independent from the WebUI and WebAPI
as a background process and is triggered asynchronously via the Database component. New requests for
the analysis of articles are stored in a queue within the WIKIGINI database and processed as soon as
resources for the analysis are available.

Authorship Calculator

Calculation of Gini indexes is based on authorship information of the words in the corresponding page. The
build-in Authorship Calculater component calculates incremental the authoship of each word in every
revision of a page. Its input is a full dump of a page, including all revisions since creation of the article. As a
build-in component it is not accessible via public interfaces.

Gini Calculator

The build-in Gini Calculator component calculates the Gini indexes for revisions of a page. Its input is the
authorship information calculated by the Authorship Calculator component for all revisions since creation
of the article. The result, a list of Gini Indexes with additional metadata is stored in the WIKIGINI Database
for further processing. As a build-in component it is not accessible via public interfaces.

Page Dump Loader

To be able to analyse the different revsisions of a page, the dump of the corresponding page has to be
loaded. This dump can be either extraced from the last full dump of the corresponding Wikipeda language
version, or via the export functionality of Wikipedia. The Page Dump Loader component is able to load the
dumps of a requested article on demand via the export functions of Wikipedia. The full dumps are handed
over to the Authorship Calculator component for further processing. As a build-in component it is not
accessible via public interfaces.

Client Request Handler

The Client Request Handler component comprises the indirect interface to the WIKIGINI Analyser
component. Request for the analysis of pages are stored in the WIKIGINI Database and asynchronously
processed by the Client Request Handler component. For each new request the component triggers the
download of new revisions of the corresponding page, the analysis of the authorship of words and the
calculation of the Gini indexes. As a build-in component it is not accessible via public interfaces.

RENDER Technical Architecture

Page 36 of (51) © RENDER consortium 2010 – 2013

Figure 19. The WIKIGINI component diagram.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 37 of (51)

5.2.4 NewsFinder

NewsFinder provides news articles relevant for Wikipedia articles. Given a Wikipedia article title and the
language version, NewsFinder determines news articles ranked by relevance.

5.2.4.1 Use Case Diagram

Figure 20. NewsFinder use case diagram

Table 22. The “Search news” use case scenario.

Use case name Search news

Actors User.

Preconditions -

Postconditions User visualizes the list of related news articles.

Main scenario 1. User opens NewsFinder web front-end in a web browser.
2. User searches for a Wikipedia article title (and its language ID).
3. The system sends this information to the back-end server.
4. The back-end returns results.

5.2.4.2 Component Diagram

Figure 21. NewsFinder component diagram.

RENDER Technical Architecture

Page 38 of (51) © RENDER consortium 2010 – 2013

Newsfeed provides the feed of news articles crawled from RSS-enabled sites. These news articles are
annotated using the Enrycher service pipeline. The annotated news are stored in QMiner.

The QMiner component is NoSQL database that enables fast querying of the database based on user input
(only the search term / Wikipedia article and language Id are considered at this point) and returns the
matching news articles. A ranking algorithm is used to order the news based on how related they are to the
Wikipedia article.

5.3 Google Case Study Software Components

DiversiNews is an interactive tool which allows users to browse and summarize news articles from different
perspectives. Given a certain topic of interest, the tool provides a succinct summary of the latest news, as
well as the individual news items that have been summarized, sorted by relevance. The user can further
specify which perspective on the news should be emphasized: articles containing certain predominant
keywords, articles that belong to a certain geographical region, or articles with a positive or negative
outlook. Depending on the user preferences, the summary is updated accordingly and the articles get
reordered.

5.3.1 Use Case Diagram

Figure 22. DiversiNews use case diagram.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 39 of (51)

Table 23. “Search News” use case scenario.

Use case name Search news

Actors User.

Preconditions -

Postconditions User visualizes the summarization results, extracted and related
entities, news source location, sentiment.

Main scenario 1. User opens DiversiNews web front-end in a web browser.
2. User enters search keywords in the main page.
3. The system sends these values to the back-end server.
4. The back-end returns results.

Alternative scenario 4. The back-end returns no results for the provided keywords.

Table 24. “Select news cluster” use case scenario.

Use case name Select news cluster

Actors User.

Preconditions -

Postconditions User visualizes the summarization results, extracted and related
entities, news source location, sentiment.

Main scenario 1. User opens DiversiNews web front-end in a web browser.
2. User selects a news cluster in the main page.
3. The system sends this information to the back-end server.
4. The back-end returns results.

Table 25. “Select topic” use case scenario.

Use case name Select topic

Actors User.

Preconditions User searched for news via the keyword search or selected a news
cluster

Postconditions The summarization results, extracted and related entities, news
source location, sentiment change according to the selected topic.

Main scenario 1. User moves the search point on one of the possible displayed
topics.
2. The system sends this value to the back-end server.
3. The back-end updates the results.

Table 26. “Select sentiment” use case scenario.

Use case name Select sentiment

Actors User.

Preconditions User searched for news via the keyword search or selected a news
cluster

Postconditions The summarization results, extracted and related entities, news
source location, sentiment change according to the selected
sentiment.

Main scenario 1. User moves the sentiment scroll bar to either positive or negative
sentiment.
2. The system sends this value to the back-end server.
3. The back-end updates the results.

RENDER Technical Architecture

Page 40 of (51) © RENDER consortium 2010 – 2013

Table 27. “Select related entity” use case scenario.

Use case name Select related entity

Actors User.

Preconditions User searched for news via the keyword search or selected a news
cluster

Postconditions The summarization results, extracted and related entities, news
source location, sentiment change according to the selected topic.

Main scenario 1. User selects one of the related entities from the list.
2. The system sends this value to the back-end server.
3. The back-end updates the results.

5.3.2 Component Diagram

Figure 23. DiversiNews component diagram.

DiversiNews is implemented as a classic server-client architecture. The DiversiNewsServer component is
central both visually in the diagram and logically as far as dataflow is concerned. It delegates work to other
components and enables communication between them. In particular:

The QMiner component is NoSQL database that enables fast querying of the database based on user input
(only the search term / cluster ID are considered at this point) and returns the matching documents.

The Server component itself performs ranking of the results based on the remainder of the user input, i.e.
the position of diversity controls (topical map, world map, sentiment bias)

The ranked documents are relayed to the Summarizer component which returns a summary.

The filtered, ranked and summarized results are sent to the Client component, written in JavaScript and
running in the user's browser. This is a "thin client" that does no processing: it relays the user inputs to the
Server and receives full results in response. Its only responsibility is formatting and display. The one

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 41 of (51)

exception to this is the FactForge component which, due to greater ease of integration, is currently
contacted from the Client rather than the Server.

The FactForge component receives as input the documents currently being displayed to the user. It queries
the semantic database to find related entities and returns those to the Client to be displayed as further
browsing suggestions, enabling exploratory analysis of the dataset.

Figure 24. The Google Summarizer component diagram.

TopicSum is a C++ library that is invoked by its clients to generate summaries of news collections. The
bundle with the summarizer source code is available for download from:

https://code.google.com/p/summarizer/source/checkout.

Initially, the output from the DiversiNewsServer (provided in XML) needs to be parsed and transformed into
the summarizer's input format. The data structured used for input and output in the summarizer are all
based on protocol buffers, which allow for very efficient serialization, extensibility, and are language and
platform neutral, facilitating portability across applications.

TopicSum: the main component of the summarization tool. It stores the set of sentences from the original
documents. Using these, an extractive summary will be constructed. It initializes sentence candidate
scorers by analyzing the document collection, from which statistics are extracted, e.g. identifying terms that
represent the central topic which the news are reporting. This step needs to be run just once, when the
user selects a news collection of interest.

GibbsSampler: implements the Gibbs sampling algorithm; this component is responsible for sampling from
the distribution used by TopicSum.

SummarizerInterface: provides an interface for the summarization tool, which the DiversiNewsServer
accesses. The weighted sentence set is received as input from the DiversiNewsServer, and the output sent
back to the DiversiNewsServer is the generated summary.

Postprocessor: removes unnecessary fragments of the selected sentences, may attempt to reorder them,
and returns them to the client.

https://code.google.com/p/summarizer/source/checkout

RENDER Technical Architecture

Page 42 of (51) © RENDER consortium 2010 – 2013

Redundancy: For every summarization request, the collection sentences are scored and a non –redundant
summary is generated. Particular summarization options, e.g. whether the summary needs to reflect more
positive or more negative opinions, are taken into account during sentence selection.

The Postprocessor and Redundancy steps are performed whenever the user requests a new summary, e.g.
by changing the options about polarity or the entities of interest.

5.4 Drupal Extension

The RENDER Drupal extension provides a diversity-aware view on posts provided with Drupal. It is able to
show extracted topics and named entities and provides links for these.

5.4.1 Use Case Diagram

Figure 25. The Drupal extension use case diagram.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 43 of (51)

Table 28. The “Create article” use case scenario.

Use case name Create article

Actors Drupal User.

Preconditions -

Description creates article in drupal database

 extracts diversified information using the enricher service

 stores the metadata in a local owlim store

 stores mapping between drupal article and metadata in
drupal database

Table 29. The “View related and diverse articles (detailed view)” use case scenario.

Use case name View related and diverse articles (detailed view)

Actors Drupal User.

Preconditions clicked on article in the treeview on the righthand side

Description shows related articles (based on ranking) in new frame split
up based on sentiment

Table 30. The “Edit article” use case scenario.

Use case name Edit article

Actors Drupal User.

Preconditions Article shown

Description edits article in drupal database

 extracts diversified information using the enrycher service
for the new content

 stores the metadata in a local owlim store

 updates mapping between drupal article and metadata in
drupal database

Table 31. The “Show raw rdf annotation” use case scenario.

Use case name Show raw rdf annotation

Actors Drupal User.

Preconditions clicked on “show rdf” button

Description shows rdf representation of extracted kdo metadata

Table 32. The “Show graphical rdf annotation” use case scenario.

Use case name Show graphical rdf annotation

Actors Drupal User.

Preconditions clicked on “show rdf structure” button

Description shows rdf representation in a graphical view (triples
with different colors)

RENDER Technical Architecture

Page 44 of (51) © RENDER consortium 2010 – 2013

Table 33. The “Import articles from OWLIM” use case scenario.

Use case name Import articles from OWLIM

Actors Drupal User.

Preconditions clicked on “owlim” button

Description loads articles stored in the owlim store into the drupal
system

Table 34. The “Store article to external OWLIM” use case scenario.

Use case name Store article to external owlim

Actors Drupal User.

Preconditions clicked on “load articles from owlim” button and user provided
owlim credentials

Description submits metadata of currently shown article to external
owlim store

Table 35. The “View article” use case scenario.

Use case name View article

Actors Drupal User.

Preconditions Opened specific article

Description shows intext annotation

 shows related articles on right hand side

 shows article topics
 shows tag cloud

Table 36. The “Access database via restful service” use case scenario.

Use case name Access database via restful service

Actors External service.

Preconditions -

Description provides restful interface which returns a json
representation of the most important kdo properties
extracted for a specific article

Table 37. The “Extract KDO with Enrycher” use case scenario.

Use case name Extract KDO with Enrycher

Actors Drupal User.

Preconditions -

Description see Enrycher description

Table 38. The “Rank articles with ranking service” use case scenario.

Use case name Rank articles with ranking service

Actors Drupal User.

Preconditions -

Description see ranking service description

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 45 of (51)

Table 39. The “Show tag cloud” use case scenario.

Use case name Show tag cloud

Actors Drupal User.

Preconditions -

Description provides tag cloud containing the sioc:tag values. The
most used sioc:tag values are displayed with bigger size

Table 40. The “Show intext annotation” use case scenario.

Use case name Show intext annotation

Actors Drupal User.

Preconditions -

Description annotates each occurrence of a topic in the article text
and highlights these annotations. A more detailed view
can be shown by clicking on the annotation

Table 41. The “View related and diverse articles” use case scenario.

Use case name View related and diverse articles

Actors Drupal User.

Preconditions -

Description shows a treeview with related articles (based on
ranking) separated by sentiment

Table 42. The “Show article topics” use case scenario.

Use case name Show article topics

Actors Drupal User.

Preconditions -

Description lists all topics the article talks about

5.4.2 Component Diagram

The component diagram of the Drupal extension was presented in Figure 11.

Diversity enabled Drupal extension: The diversity - enabled Drupal extension utilizes several RENDER
technologies, such as OWLIM, Enrycher or the ranking service. These are used to extract diversity – aware
information from articles. This information is displayed in several ways.

The Drupal extension uses Enrycher that extracts KDO diversity information from Drupal articles. The
extension makes use of the Render Diversity-Aware Ranking Service that performs clustering on extracted
data based on topics and sentiment. Articles in the same cluster have most topics in common with current
article are therefore considered as related. The Drupal extension uses SPARQL queries on OWLIM that can
be used to retrieve information that is displayed (e.g. tags, topics, article sentiment, ...).

5.5 TwiDiViz

TwiDiViz is a web-based application that enable the analysis and visualization of diversity in Twitter data.
This tool uses core RENDER technologies (such as the Knowledge Diversity Ontology (KDO) ontology and
the Enrycher service) to process Twitter datasets for the purpose of analyzing the impact of products on
basis of sentiment and topic mining.

RENDER Technical Architecture

Page 46 of (51) © RENDER consortium 2010 – 2013

Using TwiDiViz, users can explore and get familiar with diversity aspects of the Twitter data in two different
ways. We offer a static printable report summarizing the results of our diversity-oriented analysis. In
addition, we provide an interactive visualizer based on Microsoft Pivot Viewer.

5.5.1 Use Case Diagram

Figure 26. The TwiDiViz use case diagram.

Table 43. The “Switch time period” use case scenario.

Use case name Switch time period

Actors External tool.

Preconditions External tool shown

Description external tool defines time period of the dataset

 twidiviz loads the data
 switch to pivot viewer

Table 44. The “Retrieve used filter” use case scenario.

Use case name Retrieve used filter

Actors External tool

Preconditions pivot viewer loaded

Description applied filters of pivot viewer are submitted to external
tool

 switch to external tool

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 47 of (51)

Table 45. The “Filter dataset” use case scenario.

Use case name Filter dataset

Actors User.

Preconditions pivot viewer and data loaded

Description filter along several properties:
o document type, language, topic, tag, sentiment

Table 46. The “Switch view” use case scenario.

Use case name Switch view

Actors User.

Preconditions pivot viewer and data loaded

Description switch between different pivot viewer views:
o grid view
o graph view

Table 47. The “Zoom to twitter item” use case scenario.

Use case name Zoom to twitter item

Actors User.

Preconditions pivot viewer and data loaded, clicked on specific element

Description twitter item is zoomed
 preview is replaced by complete twitter view

Table 48. The “Clear filters” use case scenario.

Use case name Clear filers

Actors User.

Preconditions pivot viewer and data loaded

Description all filters are removed

5.5.2 Component Diagram

TwiDiViz is a visualization tool for visualizing a high number of KDO annotated twitter posts. The Microsoft
pivot viewer is used to enable to user to play with the data with different filter and sorting methods.

The component diagram of the TwiDiViz tool was presented in Figure 11.

Most technologies used to implement the TwiDiViz prototype are common sense web technologies (i.e.
JSON, etc.). However, the TwiDiViz prototype has to deal with potentially big amounts of data in a web
browser environment. This is a non-trivial issue and several visualization techniques have been evaluated
for this purpose. To solve this, Microsoft Pivot Viewer is used. Also, TwiDiViz uses two core RENDER
infrastructure services, namely Enrycher and the Data Layer based on OWLIM. Enrycher is a service-
oriented system, providing shallow as well as deep text processing functionality at the text document level.
The data layer efficiently stores the diversity knowledge. It offers a RESTfull interface to access and query
the data, which is used in the implementation of TwiDiViz. As TwiDiViz is a visualization tool, it was
designed for human users and does not offer a huge API. However, JSON encoded data filters can be sent
and received by TwiDiViz. More details on that are provided in D4.2.1 [6].

RENDER Technical Architecture

Page 48 of (51) © RENDER consortium 2010 – 2013

5.6 Interactive Modelling Tool

The Interactive Modeling Tool provides interactive diversity analysis based on social media data. The tool
segments posts and users into meaningful groups, based on different viewpoints, that depend on the topic,
users’ location and language, providing sentiment and opinion modeling, focusing on ad-hoc training of
novel topics. It answers questions like “What kinds of sentiment do people express on O2’s iPhone offer?”,
“Which operator has the most social media talk about Android devices?”.

5.6.1 Use Case Diagram

Figure 27. The Interactive Modelling Tool (HTML5 GUI) use case diagram.

Table 49. The “Query configuration” use case scenario.

Use case name Query configuration

Actors User.

Preconditions -

Postconditions User provided query configuration details.

Main scenario 1. User opens the Interactive Modelling Tool web front-end in a web
browser.
2. User selects the task, model and query parameters.
3. The system sends this value to the back-end server.
4. The back-end updates the results.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 49 of (51)

Table 50. The “Model management” use case scenario.

Use case name Model management

Actors User.

Preconditions -

Postconditions User provided model management details.

Main scenario 1. User opens the Interactive Modelling Tool web front-end in a web
browser.
2. User inputs the model name, and chooses to create a new model
or update a current model.
3. The system sends this value to the back-end server.
4. The back-end updates the results.

Alternative scenario 4. The model cannot be created or updated, in which case the
systems returns an error.

Table 51. The “Task management” use case scenario.

Use case name Task management

Actors User.

Preconditions -

Postconditions User provided task management details.

Main scenario 1. User opens the Interactive Modelling Tool web front-end in a web
browser.
2. User inputs the task name and the classes for classification.
3. The system sends this value to the back-end server.
4. The back-end updates the results.

Alternative scenario 4. The task cannot be created, in which case the systems returns an
error.

5.6.2 Component Diagram

The embedded relational database stores the data items and metadata, which need to be annotated. The
search indexing and feature construction part is driven by IJS’s QMiner infrastructure to ensure handling of
datasets bigger than the available main memory.

Analysis Component. The learning models themselves are stored in-memory, since they need to be re-
trained often. The system also utilized caching of generated feature vectors for items to enable efficient re-
training of models when new labels arrive.

The HTML5 client (GUI) directly connects to the API provided by the Analysis Component. Via the GUI users
can train the annotation models.

The API operates over the HTTP protocol, taking parameters as HTTP queries and returning responses as
JSON documents. It is accessible on http://aidemo.ijs.si/render/[operation‐name].

The following operations are supported (a detailed explanation can be found in D5.3.3 [4]).

• addmodel: create a new model for a given task using a particular algorithm

• updatemodel: manually trigger the model update

• addtask: define a new task with a given name and classes

• addlabel: add a new label to the task

• search: retrieve elements that match a free text query using full text search

http://aidemo.ijs.si/render/%5boperation‐name

RENDER Technical Architecture

Page 50 of (51) © RENDER consortium 2010 – 2013

• searchandlabel: retrieve elements that match a free text query and label them with a particular

• getuncertain: obtain the most uncertain elements given a particular active learning model

• testmodel: evaluate the performance of a given model using cross‐validation.

Figure 28. The Interactive Modelling Tool component diagram.

Technical Architecture RENDER

© RENDER consortium 2010 - 2013 Page 51 of (51)

References

[1] Reinier H. van Leuken, Lluis Garcia, Ximena Olivares, and Roelof van Zwol. 2009. Visual diversification
of image search results. In Proceedings of the 18th international conference on World wide web
(WWW '09). ACM, New York, NY, USA, 341-350. DOI=10.1145/1526709.1526756
http://doi.acm.org/10.1145/1526709.1526756

[2] Thalhammer, A (Ed). 2012. Prototype of diversity-aware ranking. RENDER Deliverable D3.3.1.

[3] Grinberg, M. (Ed). 2013. Final version of the diversity-aware ranking. RENDER Deliverable D3.3.2.

[4] Caminero, J. (Ed). 2012. Initial version of diversity information extensions for Telefónica tools.
RENDER Deliverable D5.3.3.

[5] Rusu, D (Ed). 2011. Prototype of the Fact Mining Toolkit. RENDER Deliverable D2.2.1.

[6] Floeck, F (Ed). 2012. Collecting best practices for diversity - aware collaboration. RENDER Deliverable
D4.2.1.

http://doi.acm.org/10.1145/1526709.1526756

